Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants.

نویسندگان

  • Sarah J Radford
  • Susan McMahan
  • Hunter L Blanton
  • Jeff Sekelsky
چکیده

Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster crossover-defective mutant, mei-9. In the absence of mei-9 activity, postmeiotic segregation associated with noncrossovers occurs at the expense of crossover products, suggesting that the underlying meiotic function for MEI-9 is in crossover formation rather than mismatch repair. In support of this, analysis of the arrangement of heteroduplex DNA in the postmeiotic segregation products reveals different patterns from those observed in Drosophila Msh6 mutants, which are mismatch-repair defective. This analysis also provides evidence that the double-strand break repair model applies to meiotic recombination in Drosophila. Our results support a model in which MEI-9 nicks Holliday junctions to generate crossovers during meiotic recombination, and, in the absence of MEI-9 activity, the double Holliday junction intermediate instead undergoes dissolution to generate noncrossover products in which heteroduplex is unrepaired.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excision Repair Protein Radl

Meiotic recombination and DNA repair are mediated by overlapping sets of genes. In the yeast Saccharomyces cereuisiae, many genes required to repair DNA doublestrand breaks are also required for meiotic recombination. In contrast, mutations in genes required for nucleotide excision repair (NER) have no detectable effects on meiotic recombination in S. cereuisiae. The Drosophila melanogaster mei...

متن کامل

Meiotic recombination in Drosophila Msh6 mutants yields discontinuous gene conversion tracts.

Crossovers (COs) generated through meiotic recombination are important for the correct segregation of homologous chromosomes during meiosis. Several models describing the molecular mechanism of meiotic recombination have been proposed. These models differ in the arrangement of heteroduplex DNA (hDNA) in recombination intermediates. Heterologies in hDNA are usually repaired prior to the recovery...

متن کامل

Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three n...

متن کامل

The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER.

To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for...

متن کامل

Drosophila mus301/spindle-C encodes a helicase with an essential role in double-strand DNA break repair and meiotic progression.

mus301 was identified independently in two genetic screens, one for mutants hypersensitive to chemical mutagens and another for maternal mutants with eggshell defects. mus301 is required for the proper specification of the oocyte and for progression through meiosis in the Drosophila ovary. We have cloned mus301 and show that it is a member of the Mus308 subfamily of ATP-dependent helicases and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 176 1  شماره 

صفحات  -

تاریخ انتشار 2007